
InventoryOptim Documentation
Release 0.1.0

Mehdi Ghasemi

Aug 09, 2019

Contents:

1 Introduction 1
1.1 Dependencies . 1
1.2 Download . 1
1.3 Installation . 1
1.4 Documentation . 2
1.5 License . 2

1.5.1 MIT License . 2

2 The Theory 3
2.1 Initial Motivation . 3
2.2 A Non-Deterministic Approach . 4
2.3 Enforcing Conditions on Regressors . 5
2.4 Example . 5

3 Code Documentation 9

4 Indices and tables 11

Python Module Index 13

Index 15

i

ii

CHAPTER 1

Introduction

Given inventory data of multiple (interacting) commodities from stock with limited but variable capacity, provide
insight on

• estimating future required capacity for each item based on a certain terminal segment of data,

• future cost estimation for each item,

• how the trends of individual items would change, assuming a trend change at given times (in future) for some
items?

• given a budged limit, how should the trends change to make sure a non-negative residual?

1.1 Dependencies

• NumPy,

• scipy,

• pandas,

• matplotlib,

• scikit-learn,

1.2 Download

InventoryOptim can be obtained from https://github.com/mghasemi/inventoryoptim.

1.3 Installation

To install InventoryOptim, run the following in terminal:

1

http://www.numpy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://scikit-learn.org/stable/
https://github.com/mghasemi/inventoryoptim

InventoryOptim Documentation, Release 0.1.0

sudo python setup.py install

1.4 Documentation

The documentation is produced by Sphinx and is intended to cover code usage as well as a bit of theory to explain
each method briefly. For more details refer to the documentation at inventoryoptim.rtfd.io.

1.5 License

This code is distributed under MIT license:

1.5.1 MIT License

Copyright (c) 2019 Mehdi Ghasemi

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

2 Chapter 1. Introduction

http://www.sphinx-doc.org/en/stable/
http://inventoryoptim.readthedocs.io/
https://en.wikipedia.org/wiki/MIT_License

CHAPTER 2

The Theory

2.1 Initial Motivation

This is mainly motivated by a problem regarding the Child and Family Service (CFS) in Saskatchewan, Canada. The
CFS provides services to families to prevent child maltreatment. Also, in case a mere service provision does not
guarantee child’s safety, CFS should provide out of home alternative care. According to the circumstances and child’s
needs, a child may be placed in one of the following types of care:

• Foster Care (FC)

• Group Home (GH)

• Extended Family (EF)

• Other (OP)

There are (variable) costs associated to each of these care groups as well as those who are receiving services at home
(SH) and a budget that is allocated to the CFS at the beginning of the fiscal year.

Many possible scenarios are imaginable for willing to change the trend in a certain group and/or their associated cost
in a certain time frame. It might be easy to imagine how the bend in a trend may look like. It is very hard to imagine
how this change affects other trends.

Of course one can remove these names from groups or assign other meanings and interpretations to the abstract
groups and study a hypothetical scenario that fits this framework. Let us denote various groups at time 𝑡 by
𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑛(𝑡) and their associated cost by 𝐶1(𝑡), 𝐶2(𝑡), . . . , 𝐶𝑛(𝑡). Also, denote the available budget at
time 𝑡 by 𝐵(𝑡). To tackle this problem, we are going to make a few assumptions:

1. The trend of the total capacity is invariant, meaning that although we may be able to assume changes in
each trend, but the total trend does not change. In symbols, if we introduce changes in certain group trends
and they cause adjustments in other groups, i.e., 𝐺𝑖(𝑡) → 𝐺′

𝑖(𝑡), the following holds:

𝑛∑︁
𝑖=1

𝐺𝑖(𝑡) ≈
𝑛∑︁

𝑖=1

𝐺′
𝑖(𝑡). (2.1)

3

InventoryOptim Documentation, Release 0.1.0

2. The associated costs to groups are independent. A change in the cost of one group does not introduce changes
in the costs of other groups, unless it is forced that at the end of trial period, we have a non-negative
budget residual.

Referring to the CFS problem, it should be clear that the number of children who require assistance from CFS in
any form (i.e., services at home or kept at a place of safety) is independent from how CFS manages them (1). Also,
adjustment in the costs of a certain group does not induce a change in the associates costs of other groups (2).

2.2 A Non-Deterministic Approach

Since we are interested in the general trends of various groups of items, it should be clear that the problem and hence
any possible solutions mist likely live in a non-deterministic world. We are assuming that enough data points is
provided over a consistent period of time for all groups 𝐺1, . . . , 𝐺𝑛 and their costs 𝐶1, . . . , 𝐶𝑛. Suppose that we are
willing to use Regressors ℛ1 and ℛ2 to approximate trends of item groups and their costs, respectively, for a portion
of time with available data, e.g, [0, 𝑇] [We prefer not to use all existing data point as in some cases a part of data maybe
affected by some protocols and policies that are not in effect anymore.]. In other words, the size of the item group i
at time t can be approximated by

𝐺𝑖(𝑡) ≈ ℛ1[𝐺𝑖](𝑡),

and for its cost

𝐶𝑖(𝑡) ≈ ℛ2[𝐶𝑖](𝑡).

Suppose that the following changes are desirable:

𝐺𝑖𝑗 ↦→ 𝐺′
𝑖𝑗 where 𝐺′

𝑖𝑗 (𝑡𝑖𝑗) ≈ 𝑔𝑖𝑗 for 𝑗 = 1, . . . ,𝑚 ≤ 𝑛, (2.2)

and

𝐶𝑖𝑘 ↦→ 𝐶 ′
𝑖𝑘

where 𝐶 ′
𝑖𝑘
(𝑡𝑖𝑘) ≈ 𝑐𝑖𝑘 for 𝑘 = 1, . . . , 𝑝 ≤ 𝑛. (2.3)

A desirable change in the dynamics of the whole system that satisfies (2.2) and (2.3) should also introduce a minimal
error in the system. We may use the values of ℛ1[𝐺𝑖](𝑡) and ℛ1[𝐺

′
𝑖](𝑡) to measure the introduced error. Among

various options, we assume that the introduced error is measured by

ℰ =

√︃∫︁ 𝑇

0

(ℛ1[𝐺𝑖](𝑡)−ℛ1[𝐺′
𝑖](𝑡))

2
𝑑𝑡,

which is ℓ2 norm of the difference of two regressors over [0, 𝑇].

The available budget at time 𝑡 is 𝐵(𝑡)−
∑︀𝑛

𝑖=1(ℛ1[𝐺
′
𝑖](𝑡)×ℛ2[𝐶

′
𝑖](𝑡)). So, the residual of the budget after the end of

trial period (𝑡 = 𝑇𝑓) is

𝒮 =

∫︁ 𝑇𝑓

𝑇0

𝐵(𝑡)−
𝑛∑︁

𝑖=1

(ℛ1[𝐺
′
𝑖](𝑡)×ℛ2[𝐶

′
𝑖](𝑡)) 𝑑𝑡,

which is typically desired to be maximized. Also, an alternative of (2.1) in terms of regressors should hold. So, we are
interested in the optimum solutions of the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min ℰ − 𝒮
subject to

ℛ1[𝐺
′
𝑖𝑗
](𝑡𝑖𝑗) = 𝑔𝑖𝑗 , 𝑗 = 1, . . . ,𝑚

ℛ1[𝐶
′
𝑖𝑘
](𝑡𝑖𝑘) = 𝑐𝑖𝑘 , 𝑘 = 1, . . . , 𝑝∑︀𝑛

𝑖=1 ℛ1[𝐺𝑖](𝑇𝑓) =
∑︀𝑛

𝑖=1 ℛ1[𝐺
′
𝑖](𝑇𝑓),

(2.4)

4 Chapter 2. The Theory

InventoryOptim Documentation, Release 0.1.0

where the minimum is taken over all possible candidates for ℛ1[𝐺
′
𝑖] and ℛ2[𝐶

′
𝑖], 𝑖 = 1, . . . , 𝑛.

Moreover, one may wishes that the residual at the end of trial period is non-negative. This adds the following extra
constraint (2.5) to (2.4):

𝐵(𝑇𝑓)−
𝑛∑︁

𝑖=1

ℛ1[𝐺
′
𝑖](𝑇𝑓)×ℛ2[𝐶

′
𝑖](𝑇𝑓) ≥ 0. (2.5)

2.3 Enforcing Conditions on Regressors

To convince the regressors lean toward the values given on (2.2) and (2.3), we employ a Monte Carlo type of approach.
Assuming that

𝐺𝑖(𝑡)−ℛ1[𝐺𝑖](𝑡) ∼ 𝒩 (0, 𝜎𝑖),

to handle the constraint ℛ1[𝐺
′
𝑖𝑗
](𝑡𝑖𝑗) = 𝑔𝑖𝑗 we produce a random sample for a given period before and after time 𝑡𝑖𝑗

drawn from the distribution 𝒩 (𝑔𝑖𝑗 , 𝜎𝑖) and incorporate this artificial sample to our training data. This guarantees that
ℛ[𝐺′

𝑖𝑗
] leans toward 𝑔𝑖𝑗 around time 𝑡 = 𝑡𝑖𝑗 .

The strength of this bend is directly correlated to the size of the sample and the value of 𝜎𝑖. To make sure that the
size of the sample is suitable, one can use a minimum number of sampled by default and use a ratio to estimate the
maximum size of the sample [we will use the probability designated to determine confidence intervals as the default
value for the ratio]. We repeat the same trick to handle the constraints of the form ℛ2[𝐶

′
𝑖𝑘
](𝑡𝑖𝑘) = 𝑐𝑖𝑘 .

The set of constraints ℛ1[𝐺
′
𝑖𝑗
](𝑡𝑖𝑗) = 𝑔𝑖𝑗 determines the projected values of the corresponding items at time 𝑡 = 𝑇𝑓 ,

trying to modify the ultimate values of these regressions for 𝑡 = 𝑇𝑓 clearly increases the value of ℰ . So, we choose to
relax the regressors to find their final values. For those indices 𝑖 ̸∈ {𝑖1, . . . , 𝑖𝑚}, we select candidate values 𝑔𝑖 such
that

𝑛∑︁
𝑖=1

ℛ1[𝐺𝑖](𝑇𝑓) =

𝑘∑︁
𝑗=1

ℛ1[𝐺
′
𝑖𝑗](𝑇𝑓) +

∑︁
𝑖 ̸∈{𝑖1,...,𝑖𝑚}

𝑔𝑖. (2.6)

This reduces solving (2.4) to finding best candidates for 𝑔𝑖, 𝑖 ̸∈ {𝑖1, . . . , 𝑖𝑚} that minimizes the objective of (2.4) and
satisfies (2.6). Algorithm summarizes this procedure.

2.4 Example

To see the algorithm in action we use the CFS’ data with hypothetical data for the corresponding costs and budget.
Next table provides a few samples from data. The ds ranges from January 1th, 2015 to January 1th, 2019. We chose
the last year of the data to base the analysis on and project trends for January 11th, 2021.

ds FC GH EF OP SH FCc GHc EFc OPc SHc
2018-08-30 924 780 2816 880 1969 5.97549 6.48204 1.98615 2.86382 1.77176
2017-12-21 927 712 2816 885 1863 4.63028 5.83286 2.42853 2.68884 1.60908
2016-10-13 968 666 2536 876 1660 4.06597 4.22486 1.77068 1.82547 1.34815
2017-06-08 993 744 2655 854 1802 4.89702 4.77482 1.39608 1.91099 0.931255
2015-12-17 948 565 2515 827 1729 3.17565 3.0835 0.831563 1.85582 1.04643

The following figure shows the data points and their trends estimated based on a Fourier transform.

2.3. Enforcing Conditions on Regressors 5

InventoryOptim Documentation, Release 0.1.0

Then we set the following constraints for points at time in future:

• 650 for G at January 1th, 2021

• 700 for FC at January 1th, 2021

• 6.0 for FCc at January 1th, 2020

• 8.0 for GCc at January 1th, 2021

• 2.5 for EFc at January 1th, 2020

• 3.5 for OPc at January 1th, 2020

Assuming that the DataFrame df is already set, the following piece of code sets up and runs the analysis:

initiated df
pairs= [('FC', 'FCc'), ('GH', 'GHc'), ('EF', 'EFc'), ('OP', 'OPc'), ('SH', 'SHc')]
define regressors
from NpyProximation import HilbertRegressor
from numpy import sin, cos, exp
deg = 5
skip = 1
l = 0.1
base = [lambda x: 1., lambda x: x[0]] + \

[lambda x, l=l, _=_: sin(_*x[0]/l) for _ in range(1, deg+1, skip)] + \
(continues on next page)

6 Chapter 2. The Theory

InventoryOptim Documentation, Release 0.1.0

(continued from previous page)

[lambda x, l=l, _=_: cos(_*x[0]/l) for _ in range(1, deg+1, skip)]
regressor = HilbertRegressor(base=base)
initialize
s_date = datetime(year=2018, month=1, day=1)
instance = InventoryOpt(df, date_fld='ds', units_costs=pairs, start_date=s_date,

num_intrvl=(0., 1.), projection_date=datetime(year=2021, month=1, day=1),
c_limit=.95)

instance.set_unit_count_regressor(regressor)
instance.set_cost_regressor(regressor)
instance.fit_regressors()
instance.plot_init_system().savefig('init.png', dpi=200)
instance.budget = lambda t: 30000-22000*exp(-t-1.)
constraints
instance.constraint('GH', 650, datetime(year=2021, month=1, day=1))
instance.constraint('FC', 700, datetime(year=2021, month=1, day=1))
instance.constraint('FCc', 6., datetime(year=2020, month=1, day=1))
instance.constraint('GHc', 8., datetime(year=2021, month=1, day=1))
instance.constraint('EFc', 2.5, datetime(year=2020, month=1, day=1))
instance.constraint('OPc', 3.5, datetime(year=2020, month=1, day=1))
run
instance.adjust_system(tbo='b')
fig = instance.plot_analysis()

After running the analysis, the followin figure would be the outcome.

2.4. Example 7

InventoryOptim Documentation, Release 0.1.0

Note that in some cases the solver was not able to perfectly match the suggested value at the specific time. This is due
to the stochastic nature of the problem and the provided solution.

8 Chapter 2. The Theory

CHAPTER 3

Code Documentation

class inventory.InventoryOptim(df, units_costs, date_fld=’date’, start_date=None,
num_intrvl=(0.0, 10.0), projection_date=None, c_limit=0.95,
min_samples=5, error_tol=0.0001)

Parameters

• df – the DataFrame containing data point

• units_costs – a list of pairs (𝐺𝑖, 𝐶𝑖).

• date_fld – string the name of the column keeping each row’s date

• start_date – None or datetime‘the start date of the analysis; if ‘None the minimum date
found in date_fld is used.

• num_intrvl – 2-tuple the numerical range to be used for converting dates to numbers

• projectioni_date – datetime the target date of the analysis

• c_limit – float between 0 and 1, the confidence interval

• min_samples – int minimum number of samples to perform Monte Carlo sampling

• error_tol – float error tolerance

adjust_system(tbo=’u’)
Forms and solves the optimization problem for trend adjustment

Parameters tbo – char if ‘u’ only trends will be adjusted regardless of unit costs. if ‘b’ costs
of units will be used to adjust trends

constraint(fld, value, dt)
Suggest a constraint for future.

Parameters

• fld – str the column whose values is about to be adjusted

• value – float the suggested value for the given date

• dt – datetime the suggested date for adjustment

9

InventoryOptim Documentation, Release 0.1.0

date2num(dt)
Converts a datetime to a number according to self.num_intrvl

Parameters dt – datetime

fit_regressors()
Initializes the regression objects and fit them on training data

make_date_interval_val(dt, n_days)
Converts the outcome of self.make_date_interval into a list of floats

plot_analysis()
Plots the outcome of the adjustment.

plot_init_system()
Plots the initial data points and regression curves for projection date

refit(fld, val, dt, n_points)
Refits the regressor of the fld after producing n_points samples points around dt using a normal distribution
centered at val

Parameters

• fld – the regression associated to fld will be refitted

• val – the suggested value for the regression curve at dt

• dt – the suggested datetime to make adjustments to the values of fld

• n_points – number of samples to be generated for refitting

set_cost_regressor(regressor)
Sets the regressor for unit costs. Any regression inherited from sk-learn.RegressorMixin is acceptable

Parameters regressor – RegressorMixin

set_unit_count_regressor(regressor)
Sets the regressor for unit counts. Any regression inherited from sk-learn.RegressorMixin is acceptable

Parameters regressor – RegressorMixin

10 Chapter 3. Code Documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

InventoryOptim Documentation, Release 0.1.0

12 Chapter 4. Indices and tables

Python Module Index

i
inventory, 9

13

InventoryOptim Documentation, Release 0.1.0

14 Python Module Index

Index

A
adjust_system() (inventory.InventoryOptim

method), 9

C
constraint() (inventory.InventoryOptim method), 9

D
date2num() (inventory.InventoryOptim method), 9

F
fit_regressors() (inventory.InventoryOptim

method), 10

I
inventory (module), 9
InventoryOptim (class in inventory), 9

M
make_date_interval_val() (inven-

tory.InventoryOptim method), 10

P
plot_analysis() (inventory.InventoryOptim

method), 10
plot_init_system() (inventory.InventoryOptim

method), 10

R
refit() (inventory.InventoryOptim method), 10

S
set_cost_regressor() (inventory.InventoryOptim

method), 10
set_unit_count_regressor() (inven-

tory.InventoryOptim method), 10

15

	Introduction
	Dependencies
	Download
	Installation
	Documentation
	License
	MIT License

	The Theory
	Initial Motivation
	A Non-Deterministic Approach
	Enforcing Conditions on Regressors
	Example

	Code Documentation
	Indices and tables
	Python Module Index
	Index

